Implementasi Algoritma Genetika dan Neural Network Pada Aplikasi Peramalan Produksi Mie
Studi Kasus : Omega Mie Jaya
Abstract
Companies that produce products must be able to regulate the amount of production so that it have plan production. Therefore, it is necessary to be able to predict the amount of production. This research aims to create an application that is useful in determining the amount of production. These applications using genetic algorithms and neural network. Genetic algorithm is used to optimize the weights in the neural network. From the test results, this application uses network with 12 inputs, 5 neuron in first hidden layer, 3 neurons in the second hidden layer, and 3 neurons in the last hidden layer. Then for the genetic algorithm parameters used were 10 individuals, 50 generations, crossover probability 0.8 and mutations probability 0.1. Based on the test results, this application has the forecasting’s accuracy rate reaches 86%.
Keyword : forecasting, production forecasting, genetic algorithm neural network, optimization.
Downloads
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike International License (CC-BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Copyright without Restrictions
The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
The submitted papers are assumed to contain no proprietary material unprotected by patent or patent application; responsibility for technical content and for protection of proprietary material rests solely with the author(s) and their organizations and is not the responsibility of the ULTIMATICS or its Editorial Staff. The main (first/corresponding) author is responsible for ensuring that the article has been seen and approved by all the other authors. It is the responsibility of the author to obtain all necessary copyright release permissions for the use of any copyrighted materials in the manuscript prior to the submission.